普通专升本考试,高等数学需要复习的要点有哪些?
第一章、函数、极限和连续
考点一:求函数的定义域
考点二:判断函数是否为同一函数
考点三:求复合函数的函数值或复合函数的外层函数
考点四:确定函数的奇偶性、有界性等性质的问题
考点五:有关反函数的问题
考点六:有关极限概念及性质、法则的题目
考点七:简单函数求极限或极限的反问题
考点八:无穷小量问题
考点九:分段函数求待定常数或讨论分段函数的连续性
考点十:指出函数间断点的类型
考点十一:利用零点定理确定方程根的存在性或证明含有 的等式
考点十二:求复杂函数的极限
第二章、导数与微分
考点一:利用导数定义求导数或极限
考点二:简单函数求导数
考点三:参数方程确定函数的导数
考点四:隐函数求导数
考点五:复杂函数求导数
考点六:求函数的高阶导数
考点七:求曲线的切线或法线方程或斜率问题
考点八:求各种函数的微分
第三章、导数的应用
考点一:指出函数在给定区间上是否满足罗尔定理、拉格朗日定理或 满足定理求定理中 的值
考点二:利用罗尔定理证明方程根的存在性或含有 的等式
考点三:利用拉格朗日定理证明连体不等式
考点四:洛必达法则求极限
考点五:求函数的极值或极值点
考点六:利用函数单调性证明单体不等式
考点七:利用函数单调性证明方程根的唯一性
考点八:求曲线的凹向区间
考点九:求曲线的拐点坐标
考点十:求曲线某种形式的渐近线
考点十一:一元函数最值得实际应用问题
第四章、不定积分
考点一:涉及原函数与不定积分的关系,不定积分性质的题目
考点二:求不定积分的方法
考点三:求三种特殊函数的不定积分
第五章、定积分
考点一:定积分概念、性质和几何意义等题目
考点二:涉及变上限函数的题目
考点三:求定积分的方
考点四:求几种特殊函数的定积分
考点五:积分等式的证明
考点六:判断广义积分收敛或发散
第六章、定积分的应用
考点:直角坐标系下已知平面图形,求面积及这个平面图形绕坐标走旋转一周得到的旋转体的体积
第七章、向量代数与空间解析几何
考点一:有关向量之间的运算问题
考点二:求空间平面或直线方程
考点三:确定直线与直线,直线与平面,平面与平面的位置关系;或已知位置关系求待定系数
考点四:由方程识别空间曲面或曲线的类型
考点五:写出旋转曲面方程和投影柱面方程
第八章、多元函数的微分及应用
考点一:求二元函数定义域
考点二:求二元函数的复合函数或求复合函数的外层函数
考点三:求多元函数的极限
考点四:求简单函数的偏导数或某点导数
考点五:求简单函数全微分或高阶偏导数
考点六:复杂函数(特别是含符号f)的求偏导数或全微分或高阶导数
考点七:隐函数的求偏导数或全微分
考点八:求空间曲面的切平面或法线方程;求空间曲线的切线和法线方程
考点九:求函数的方向倒数和梯度
考点十:求二元函数的极值或极值点、驻点